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For many decades, lyophilization (freeze-drying) has been the method of choice for the 
stabilization of labile drugs, biotherapeutics and vaccines, as it is considered a gentle process 
compared with traditional drying methods (such as spray drying, oven drying, �uidized bed 
drying).  Lyophilization also provides an opportunity to produce material with low moisture 
content and high surface area, allowing the possibility of long-term stability at ambient 
temperatures and rapid reconstitution prior to use.  However, due to their low density, 
lyophilized products can undergo physical breakup during transportation and handling, 
sometimes becoming fragmented and powdery, which in turn can have an impact on end user 
perception of product quality as well as the time taken for reconstitution. 

There are a number of standard quantitative tests for critical quality attributes (CQAs) such as 
residual moisture (or solvent) levels, activity, thermal properties and stability, but while most 
manufacturers would agree that cosmetic appearance of the product is also important, 
traditionally, there has been no method to quantify this aspect of the product.  Techniques such 
as scanning electron microscopy (SEM) can provide an idea of morphology at the microscopic 
level, while gas adsorption methods can go one step further in providing an estimate of speci�c 
surface area and mean pore diameter of a lyophile; however, it can legitimately be argued that 
the sample preparation process itself for either of these measurements can lead to changes to 
the morphology of the material under test.  Rheometers and tensile testing devices on the 
market are generally designed for application to higher density and less �exible materials than 
lyophiles, and with some degree of sample preparation required. 

A range of excipients, excipient mixtures and model protein formulations at a series of 
concentrations and molecular ratios were lyophilized under a number of di�erent freezing and 
sublimation conditions in glass vials, using a VirTis AdVantage EL or Genesis 25EL freeze-dryer 
(SP Scienti�c, Gardiner NY).  A device was built using a standard load cell and linear actuator 
combined with a customized indenter and control software (Fig. 1).  The resulting instrument 
is able to provide a 1 gram force at 0.01mm steps into freeze-dried materials. Samples were 
subjected to stress-strain measurements in situ (without the need to remove them from the 
vials). Young’s Modulus was taken as the gradient of the plot of stress vs. strain in the linear 
elastic region, and the failure point de�ned at the point of the gradient suddenly changing to 
zero, indicating crushing (Fig. 2).  All tests were carried out within 3 minutes, in order to limit 
atmospheric moisture uptake by the lyophilized materials, which can alter their mechanical 
properties by plasticization (Ref. 1). 

In this study, we developed a customized testing device comprising a load cell, linear actuator, 
indenter and control software in order to measure the mechanical properties of freeze-dried 
materials in situ, thus circumventing the need for sampling.  Vials of mannitol, sucrose, 
trehalose, dextran, model proteins and various combinations of these components were 
lyophilized under di�erent processing conditions (temperatures, ramp rates, chamber 
pressures) and from a series of starting concentrations, to provide a realistic range of samples 
for testing the sensitivity of the ‘MicroPress’ instrument and repeatability of measurements. 

Data demonstrate that the customized instrument is su�ciently sensitive to detect statistically 
signi�cant di�erences in the mechanical properties of single ingredients when lyophilized 
individually, that excipients that appear to have similar cake-forming properties have 
markedly di�erent inherent Young’s Modulus and strength values, both of which increase 
near-linearly with solute density. 

Signi�cant di�erences were detectible for samples of mannitol where di�erent freezing 
conditions were employed in the lyophilization cycle, indicating that not only is the mean pore 
diameter hugely in�uential on the mechanical properties of the resulting lyophile, but also 
that amorphous / crystalline behavior and possibly even polymorphism could have a 
measurable impact. 

With further optimization of the instrument parameters, di�erences were even detected in the 
mechanical properties of lyophiles in vials taken from di�erent locations across a single 
lyophilizer shelf. 

We therefore believe that this method could represent a valuable addition to the existing array 
of techniques available to provide quantitative measurement of lyophile critical quality 
attributes (CQAs). 
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Fig. 1: Customized
compression tester 
(MicroPress)

Fig. 2: Example of a stress/strain pro�le

Fig. 3: Mean maximum stress-strain curves for excipients 
processed using identical conditions. Freeze-drying runs 
were carried out in triplicate for trehalose and sucrose 
(n=10 per run), single run for mannitol.

Experimental data indicate that: 

Excipients freeze-dried under identical conditions from the same starting 
concentration of 5% (w/v) can display markedly di�erent mechanical 
properties (Fig. 3), even when the outward appearance of the cakes is similar 
with no obvious visible defects; 

Freezing conditions have a pronounced e�ect on the properties of resulting 
mannitol cakes (Fig. 4), which may be related to ice crystal size (a�ecting 
porosity) but also possibly to inherent properties related to polymorph type 
that can result from the application of di�erent cooling rates and/or the 
application of annealing during the cycle; this is supported by evidence from 
x-ray di�ractograms that show that di�erent polymorphs had been created
(Fig. 5);

This method appears to have su�cient sensitivity to detect subtle di�erences 
in mechanical properties between neighboring vials of identical material from 
a single lyophilizer shelf (Fig. 6), thus indicating when cycle conditions might 
need to be optimized in order to reduce intra-batch variability.  Results also 
demonstrated that both Young’s Modulus and strength increase near-linearly 
with density (data not shown), which may assist in the optimization of the 
starting concentration vs. �ll volume for a particular formulation (Ref. 2). 
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KEY:
Fast = quench cooled in liquid nitrogen
Med = cooled at ~1C / min in lyophilizer
Slow  = cooled at <0.25C / min in lyophilizer

Back of shelf

Front of shelf

Fig. 4: Young’s Modulus data (Pa) for Mannitol as a
function of cooling rate employed in lyophilisation cycle

Fig. 6: Di�erences in mechanical properties observed for 6% sucrose
samples across a single shelf

Fig. 5: XRD analysis of mannitol samples indicate that di�erent polymorphs 
were produced. The di�ractogram of the ‘Slow cool’ sample exhibits a notable 
peak at a value of 10 (2θ) which is characteristic of the δ polymorph, while the 
two upper di�ractograms for samples cooled more rapidly are both typical 
of β and α polymorphs.
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T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

K0 K1 K2 K3 K4 K5 K6 K7 K8 K9

J0 J1 J2 J3 J4 J5 J6 J7 J8 J9

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

2% Sucrose

10% Sucrose

8% Sucrose

6% Sucrose

4% Sucrose

where σ is the stress and ε is the strain, 
and E is the Young’s / Elastic modulus
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